Bridging k-sum and CVaR optimization in MILP
نویسندگان
چکیده
منابع مشابه
CVaR Robust Mean - CVaR Portfolio Optimization
One of the most important problems faced by every investor is asset allocation. An investor during making investment decisions has to search for equilibrium between risk and returns. Risk and return are uncertain parameters in the suggested portfolio optimization models and should be estimated to solve theproblem. The estimation might lead to large error in the final decision. One of t...
متن کاملCVaR norm and applications in optimization
This paper introduces the family of CVaR norms in Rn , based on the CVaR concept. The CVaR norm is defined in two variations: scaled and non-scaled. The well-known L1 and L∞ norms are limiting cases of the new family of norms. The D-norm, used in robust optimization, is equivalent to the non-scaled CVaR norm. We present two relatively simple definitions of the CVaR norm: (i) as the average or t...
متن کاملeconomic optimization and energy consumption in tray dryers
دراین پروژه به بررسی مدل سازی خشک کردن مواد غذایی با استفاده از هوای خشک در خشک کن آزمایشگاهی نوع سینی دار پرداخته شده است. برای آنالیز انتقال رطوبت در طی خشک شدن به طریق جابجایی، یک مدل لایه نازک برای انتقال رطوبت، مبتنی بر معادله نفوذ فیک در نظر گفته شده است که شامل انتقال همزمان جرم و انرژی بین فاز جامد و گاز می باشد. پروفایل دما و رطوبت برای سه نوع ماده غذایی شامل سیب زمینی، سیب و موز در طی...
15 صفحه اولCVaR Optimization and Multivariate Joint Density Modeling
One attractive candidate as standard risk metric is Conditional Value at Risk (CVaR), which has a lot of advantages compared with Value at Risk (VaR). In this paper, I study CVaR as an objective function in a series of optimization problems. I compare the CPU time of the linear programming approach proposed in [14] with that of the fast gradient descent method [5] when increasing the number of ...
متن کاملFragility of CVaR in portfolio optimization
We evaluate conditional value-at-risk (CVaR) as a risk measure in data-driven portfolio optimization. We show that portfolios obtained by solving mean-CVaR and global minimum CVaR problems are unreliable due to estimation errors of CVaR and/or the mean, which are aggravated by optimization. This problem is exacerbated when the tail of the return distribution is made heavier. We conclude that CV...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Operations Research
سال: 2019
ISSN: 0305-0548
DOI: 10.1016/j.cor.2019.01.010